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Intermediate asymptotics for Richards’ equation in a finite layer
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Abstract. Perturbation methods are applied to study an initial-boundary-value problem for Richards’ equation,
describing vertical infiltration of water into a finite layer of soil. This problem for the degenerate diffusion
equation with convection and Dirichlet/Robin boundary conditions exhibits several different regimes of behavior.
Boundary-layer analysis and short-time asymptotics are used to describe the structure of similarity solutions,
traveling waves, and other solution states and the transitions connecting these different intermediate asymptotic
regimes.
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1. Introduction

In this article, we use an array of asymptotic techniques to give a complete description of the
behavior in a mathematical model for the vertical infiltration of rainwater into a finite layer of
dry soil. This is a problem of great practical interest in the study of fluid flow in porous media
[1, Chapter 9], [2–5]. Our model for this problem is a special case of Richards’ equation [6]
for the transport of water content u = u(x, t) in unsaturated soil, with the position x being
measured downward into the soil layer,

∂u

∂t
+ ∂(uk)

∂x
= ∂2(uk)

∂x2
. (1.1)

The dynamics of this equation have been studied extensively for the Cauchy problem describ-
ing the transport of a finite release of a contaminant [7–9].

Interestingly, the solution of the initial-boundary-value problem for (1.1) for the infiltration
of water from a steady source into a finite soil layer with an impervious lower boundary
exhibits several different stages of behavior. As shown in Figures 1 and 2, for short times there
is a transient regime described by a similarity solution before the flow develops into a steady
traveling-wave profile. Later, the flow reaches the impervious boundary and water begins to
accumulate at the base of the soil layer. Subsequently, depending on conditions, the soil at the
base of the layer can saturate with water, yielding a saturation wave that propagates upward
through the layer, or if saturation does not occur, then a slower diffusive wave transports water
upward through the layer. This is a surprisingly rich set of dynamics for Equation (1.1); it
includes several transitions between different regimes of behavior. This problem can serve to
provide more insight into new problems for flow in layered soils [10], and problems for more
sophisticated models [11, 12]. Moreover, the asymptotic formulae derived here give nearly
complete information about the key aspects of the flow for all times, 0 ≤ t < ∞. This defers
the need for numerical simulations [13] of this fundamental problem. The solutions presented
here certainly do not eliminate the pressing need for numerical calculations of flows in porous
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Figure 1. (left) The starting flow regime – initial transient behavior and the convergence to a traveling wave.
(right) Stopping behavior as the traveling wave runs into the impermeable boundary at x = 1 and leads to the
accumulation of water at the boundary.

Figure 2. The reverse flow regime – for longer times, the flow is dominated by the no-flux boundary condition:
(left) with saturation there is a well-defined saturation front, (right) diffusive reverse flow without saturation.

media, but they do provide an analytical starting point which may make computations of much
more challenging problems more tractable.

In addition to the role of (1.1) as Richards’ equation for fluid flow in porous media, this
problem is of interest in many other settings. Equation (1.1) is a generalized Burgers’ equation
and has been studied in connection with nonlinear diffusive waves [14, Chapter 4], [15, 16].
A very similar equation also describes the basic lubrication model for the free-surface flow of
thin viscous films driven by gravity [17]. Furthermore, in absence of the convective term, for
k > 1 Equation (1.1) is a nonlinear degenerate diffusion equation called the porous-medium
equation. This model has attracted enormous mathematical attention for its special properties
[18, 19], [20, Chapter 2] and its applications to modeling other physical systems [21, 22].

In many ways, this article serves to continue the use of asymptotic techniques to describe
flow in porous media begun in [23, 24]. There, attention was focused on the leading-order
analysis of the interaction of the flow with a boundary. Here, that ‘stopping behavior’ is
extended to higher order and it is only one of several regimes that go into constructing the
overall description of the dynamics. Indeed, many classes of intermediate asymptotic regimes,
as described in [20, Chapter 2], are exhibited by the boundary-value problem we consider. We
combine known results on the early stages of the dynamics with new results derived for the
later stages to yield this overall description of the problem.

The existence of these different regimes of behavior provides insight into changes in the
dominant mechanisms controlling different stages of the flow. For short-times, this is repre-
sented by a transition from a diffusive similarity solution [22] to a traveling wave solution
[14, Chapter 4]; this is called the starting flow and is described in Section 4. For longer times,
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the influence controlling the dynamics changes from the boundary condition at the surface
of the layer to the boundary condition at the base of the layer, see Section 5. This transition
is accompanied by the destabilization of the in-flow traveling wave in favor of reverse flow,
given by either a traveling wave, see Section 6, or a diffusive solution, see Section 7.

On first sight (1.1) does not contain an obvious small parameter for use in asymptotic
analysis of the problem. However, through the use of mathematical properties of degener-
ate diffusion equations and classical perturbation methods including multiple scale analysis,
boundary layers, and artificial small parameters [25, Chapter 3], we will solve an array of
problems that will cumulatively give us a very good approximation of the full dynamics of
our problem for (1.1).

2. Formulation

Beginning in dimensional form, we examine the problem for Richards’ equation [6] for the
vertical transport of water into a finite layer of homogeneous soil,

∂U

∂T
+ ∂

∂X
(K(U)) = ∂

∂X

(
D(U)

∂U

∂X

)
, 0 ≤ X ≤ L, (2.1)

whereU(X, T ) ≥ 0 is the local moisture content, X represents a position measured downward
into the soil layer, and K(U) and D(U) describe the hydraulic conductivity and diffusivity of
the soil respectively [1, Chapter 9], [26, Chapter 3]. We assume that the layer is initially dry
at time T = 0,

U(X, 0) = 0. (2.2)

For X > L, we imagine that the deeper layers of soil are either of a coarser grade, or entirely
impermeable. Hence, we impose a no-flux condition at the boundary,

∂U

∂X

∣∣∣∣
X=L

= K(U)

D(U)
. (2.3)

If the soil is of a coarser grade for X > L, then the moisture will not be able to propagate past
X = L until a minimum entry pressure has been achieved at the stratification surface; we will
neglect this possibility and strictly enforce (2.3). At the surface of the layer, we assume that
there is a steady source of water,

U(0, T ) = U0. (2.4)

We will focus on the solution of this problem for Brooks-Corey soils [26, Chapter 3] with
conductivity and diffusivity taken to be of the forms

K(U) = K0U
k, D(U) = D0U

n, (2.5)

with k ≥ 1, n ≥ 0. Further, we will restrict our presentation to the case where k = n + 1,
where a closed-form traveling-wave solution can be found [24]. However, more generally, our
results can be extended to other soil models that have the same limiting behavior (2.5) for
U → 0.

To complete the statement of the problem, we must acknowledge that soils can become
saturated at a finite level of moisture content, U = Us . Richards’ equation (2.1) describes
the flow in unsaturated regions of the soil layer, where U < Us . For this vertical infiltration
problem, the solution, taking account of the possibility of saturation, will be of the form
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U(X, T ) =
{ solution of (2.1) 0 ≤ X ≤ Xs(T ),

Us Xs(T ) ≤ X ≤ L,
(2.6)

where Xs(T ) is the position of the saturation interface. If the entire layer is unsaturated, then
we define Xs = L. At Xs(T ), we impose a no-flux condition like (2.3) since there can be no
further flux into the already saturated soil.

Applying our assumptions for the soil model reduces (2.1) to

∂U

∂T
+K0

∂

∂X

(
Un+1

) = D0
∂

∂X

(
Un∂U

∂X

)
, (2.7)

with linear boundary condition, at the impervious boundary at X = L,

D0
∂U

∂X

∣∣∣∣
X=L

= K0U(L, T ). (2.8)

We can non-dimensionalize this problem using the scalings

U = U0u, X = Lx, T = τ t. (2.9)

Balancing the time derivative with the convective terms yields the time-scale

τ = L

K0U
n
0

. (2.10)

The contribution of the diffusivity is scaled by the reciprocal of the Peclet number,

Pe = K0L

D0
. (2.11)

The nondimensionalized problem for the unsaturated flow is then

∂u

∂t
+ ∂

∂x

(
un+1

) = 1

Pe

∂

∂x

(
un
∂u

∂x

)
, 0 ≤ x ≤ 1, (2.12)

with boundary conditions

u(0, t) = 1,
1

Pe

∂u

∂x

∣∣∣∣
x=1

= u(1, t), (2.13)

and initial condition

u(x, 0) = 0. (2.14)

Equation (2.12) is a degenerate parabolic equation; it is well known that it supports non-
negative weak solutions that have a discontinuous derivative at the wetting interface xw(t)

(or edge of support) where the solution vanishes, u(xw(t), t) = 0. These solutions have finite
speed of propagation of the interface [18, 27], a mathematical property that makes this class of
model equations seem more physically appropriate for many transport problems [28]. Local
analysis of (2.12) with the imposition of the condition that there is no unphysical flux into
the dry region ahead of the interface position yields an equation for the motion of the wetting
interface,

dxw
dt

= − 1

Pe
un−1 ∂u

∂x

∣∣∣∣
x→x−

w

, u(x → xw) = 0. (2.15)
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From the scalings (2.9), if the soil has a sufficiently low saturation level then we will have to
impose the extra condition on the flow, that

u(x, t) ≤ us with us ≡ Us

U0
> 1. (2.16)

While the solution is uniformly less than us this condition does not come into effect. However,
because of the accumulation of moisture at the impervious boundary, for longer times, the
maximum of the solution will grow in a monotone manner until it reaches the equilibrium
solution of (2.12, 2.13), ū(x) = ePex , or it reaches the saturation level us . If us < ePe, then
eventually there will be a finite portion of the layer, xs ≤ x ≤ 1, where the soil is saturated
with water and the solution there is u(x, t) ≡ us . There will be a moving interface, xs(t),
separating regions of saturated and unsaturated soil. At the saturation interface, there can be
no further flux of moisture into the saturated region, hence we impose the no-flux boundary
conditions at the moving boundary,

u(xs(t), t) = us,
1

Pe

∂u

∂x

∣∣∣∣
x→x−

s

= us, (2.17)

and the domain where Richards’ equation (2.12) is applied just to the unsaturated zone,
0 ≤ x ≤ xs(t). From physical considerations, it is clear that the saturated zone will grow
steadily, with xs(t) monotone decreasing until it approaches its positive steady-state value,
x̄s = log(us)/Pe.

3. Traveling-wave solutions

As we will see, for several regimes in our problem, the asymptotic solution is given by
a traveling wave, so before proceeding, we briefly summarize the results for these wave
solutions.

A traveling wave of (2.12) is found by assuming a solution of the form u(x, t) = U(x−ct)

where c is the propagation speed. This ansatz reduces Richards’ equation to the ordinary
differential equation

−cdU

dξ
+ d

dξ

(
Uk
) = 1

Pe

d

dξ

(
UndU

dξ

)
, (3.1)

where ξ = x−ct . For appropriate conditions on (k, n), there will be steady-profile, front-type
solutions of this equation [14, Chapter 4]. In the context of the current problem, we integrate
(3.1) and apply the boundary conditions of a constant source u = 1 and the interface condition
at the leading edge of the traveling wave (2.15). This yields that the velocity is c = 1, hence
our choice for the normalization of u has also given us traveling-wave dynamics with an O(1)
time-scale. The solution can then be written in implicit form as

ξ = 1

Pe

∫ U

0

Un dU

Uk − U
, (3.2)

where the wetting front is specified to be at ξ = 0. This traveling wave solution is commonly
called the ‘profile at infinity’ in the literature on flow in porous media [29–32].

The solution (3.2) describes the flow for ξ ≤ 0; for ξ > 0 the solution is U ≡ 0. The
fact that there is a well-defined position of the wetting interface is a well-known result of
nonlinear degenerate diffusion [18, 27, 28]. For convenience, we restrict our presentation to
the case k = n+ 1 where (3.2) yields the closed-form solution for any positive n > 0,
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U0(ξ) = (
1 − enPeξ )1/n

+ , (3.3)

where we introduce the notation for the non-negative truncated weak solution: v+ ≡ max(v, 0).
The subscript zero indicates that this traveling wave is compactly supported and is propagat-
ing into dry soil with u ≡ 0. The techniques applied in the following sections can still be
used without a closed-form solution of (3.2), but they would become more cumbersome to
manipulate.

Using the asymptotics of (3.2) as U0 → 0 shows that the structure near the wetting
interface is given by

U0(ξ) ∼ (−nPeξ)1/n, as ξ → 0−. (3.4)

In Section 4, we will see that the Boltzmann similarity solution for the starting flow has a
similar form at the wetting interface. Studying (3.3) for U → 1 shows that

U0(ξ) ∼ 1 − 1

n
enPeξ , as ξ → −∞, (3.5)

therefore the width of the front becomes narrower as n and the Peclet number increase.

4. The starting flow

4.1. INITIAL STAGE

The initial stage of the evolution describes the entry of moisture into the soil layer from the
uniform source for very short times. Initially the solution will exhibit a large gradient in u over
a small interval. We exploit this structure of the solution to describe the starting flow regime
of the dynamics, from t = 0 until the eventual convergence to a traveling wave.

Let ε describe the spatial scale on which u varies from the boundary condition u(0, t) = 1
to u = 0 at the wetting interface position, x = xw(t). Substituting the scalings x̃ = x/ε and
τ = t/ε2 in (2.12), we have

∂u

∂τ
+ ε

∂

∂x̃

(
un+1) = 1

Pe

∂

∂x̃

(
un
∂u

∂x̃

)
, (4.1)

with initial and boundary conditions,

u(0, τ ) = 1, u(x̃, 0) = 0. (4.2)

The parameter ε is called an artificial parameter since it was introduced by an arbitrary scaling
and can just as easily be completely eliminated. Artificial parameter expansions can be shown
to be non-uniformly convergent in time [25, Chapter 3], [33], [34, Chapter 3]. Hence, our
solution will be good only for a limited time, but this situation can be improved somewhat
by going to higher orders. This approach will be sufficient for our proposes to demonstrate
transitions in the asymptotic behavior of the solution and to obtain improved estimates for
quantities of interest. We will make use of analytical results by others in regard to the long-
time behavior of the solution in various regimes.

As ε → 0, at leading order the convective term is absent and (4.1) reduces to a Dirichlet
problem for the porous-medium equation,

∂u0

∂τ
= 1

Pe

∂

∂x̃

(
un0
∂u0

∂x̃

)
, (4.3)
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subject to (4.2). The solution of this leading-order problem is a Boltzmann similarity solution
of the form, u0(x̃, τ ) = V0(x̃/

√
τ), where V0(η) satisfies

1
2η

dV0

dη
+ 1

Pe

d

dη

(
Vn

0

dV0

dη

)
= 0, V0(0) = 1, (4.4)

with η = x̃/
√
τ . For the ubiquitous linear problem (n = 0), this solution is V0(η) =

erfc( 1
2η/

√
Pe). For the nonlinear porous-medium equation with n > 0, this solution has

compact support with a well-defined interface position that moves with a finite speed [18,
19, 28].

Here the wetting interface is given by xw(t) = ηw
√
t , where ηw is a constant. The appro-

priate form of the interface condition (2.15) is then

1
2ηw = − 1

Pe
Vn−1

0

dV0

dη

∣∣∣∣
η→η−

w

V0(ηw) = 0. (4.5)

We can scale the Peclet number out of this problem by using η → η̂/
√

Pe , so the solution
of the leading-order problem (4.4, 4.5) only depends on n. There is no general closed-form
solution of this problem for n > 0 [35], so in practice we solve (4.4, 4.5) numerically as a one-
parameter shooting problem. In Figure 3b, we show numerical calculations for the interface
position, ηw as a function of n; it is a monotone decreasing function that diverges to infinity as
n → 0. We can gain analytical insight into this behavior by considering the asymptotics for
n → ∞ as done in [22]. Similar to the approach used in [21] for n → 0, consider the change
of variables,

V0(η) = V 1/n(y), η = y√
nPe

. (4.6)

Then the moving-boundary problem for (4.4) becomes

VV ′′ + 1

n

(
1
2yV

′ + V ′2) = 0, 0 ≤ y ≤ yw, (4.7)

subject to the boundary conditions,

V (0) = 1, V (yw) = 0, V ′(yw) = − 1
2yw. (4.8)

Expanding V (y) and yw in regular perturbation series, as n → ∞, we obtain the solution of
the moving boundary problem as

V (y) ∼
(

1 − y√
2

)
+ y

8n
(3

√
2 − 2y) −

√
2y

192n2
(77 − 36

√
2y + 4y2), (4.9)

with the interface given by

yw ∼ √
2 + 1√

8n
− 19

√
2

96n2
. (4.10)

This result, in an equivalent form, was previously derived by King in [22]. Figure 3a shows
the excellent agreement of (4.9) even for moderate values of n with the numerically calcu-
lated solution of (4.4). Figure 3b shows the comparison of (4.10) with the calculated wetting
interface over a wide range of values for n.

More generally, we could extend the similarity variables suggested by this solution to in-
clude transient behavior with the timescale s = log(t). Then we can write u(x̃, τ ) = V(η, s),
and (4.1) transforms to



386 T.P. Witelski

Figure 3. (left) The numerically calculated similarity solution V0(η) of (4.4) for n = 2 (solid) compared with the
three-term asymptotic solution (4.9) for n → ∞ (dashed curve). (right) The numerically calculated wetting front
coefficient ηw (solid) compared with the three-term asymptotic result (4.10) (dashed curve) as a function of n.

∂V

∂s
= 1

2η
∂V

∂η
+ 1

Pe

∂

∂η

(
Vn ∂V

∂η

)
− εes/2 ∂

∂η

(
Vn+1) . (4.11)

We can seek the solution of this problem as a regular perturbation expansion, V(η, s) =
V0(η)+ εV1(η, s) +O(ε2). At O(ε), the problem for V1 is

∂V1

∂s
= LV1 − es/2 ∂

∂η

(
Vn+1

0

)
, (4.12)

where Lf = 1
2η∂ηf + ∂ηη(V

n
0f )/Pe. In the absence of the inhomogeneous forcing term,

(4.12) is the equation for the linear stability analysis of the similarity solution V0(η). The
similarity solution V0(η) is an asymptotic attractor for the porous-medium equation (4.3) [19,
36–38]. Hence L is a stable linear operator with only negative eigenvalues. Consequently, the
dominant contribution to V1 is given by the convective forcing term and V1 exhibits unstable
growth as s → ∞, V1 = O(es/2).

For τ → ∞, the solution of (4.3) converges to the similarity solution, possibly with a
shifted time, τ → τ+φ in the argument, i.e., u0(x̃, τ ) → V0(x̃/

√
τ + φ) for different possible

initial data [39]. This continuous, one-parameter family of solutions reflects the invariance of
the PDE (4.3) with respect to time-shifts. We can write this family of solutions in terms of the
similarity variables as

V(η, s) = V0([1 + φe−s]−1/2η). (4.13)

For infinitesimal time shifts, φ → 0, these solutions can be expanded to provided linearized
eigenmodes connected to the time-shift symmetry,

V(η, s) ∼ V0(η) + φV̂T (η)e
λT s V̂T (η) = 1

2ηV
′
0(η) λT = −1. (4.14)

We now make use of this one-parameter family of solutions to motivate a different form
of perturbation expansion for the solution of (4.1), one which offers some benefits over the
regular series in V described above.

When the specific initial data are neglected, the general similarity solution of (4.3) is

u0(x̃, τ ) = V0

(
x̃√
τ + φ

)
. (4.15)

This can be regarded as the leading-order term in a multiple-scale expansion [25, Chapter 4]
of the solution, where φ is a slowly varying phase function with φ = 0 at τ = 0 to satisfy
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the initial conditions. The natural slow-space and slow-time variables for Equation (4.1) are
in fact the original space and time scales, x = εx̃ and t = ε2τ . However, when it is assumed
that φ is a function of the slow variables alone, φ = φ(x, t) turns out to be too restrictive;
φ must be be slowly varying compared to τ , but as we will see in this problem, to balance
the convective term φ can not be independent of τ . Recall that problem (4.1) is expressed in
terms of an artificial small parameter. Consequently, the final form of the solution must be
independent of this arbitrary parameter. In this context, we note that the combination of the
slow variables, x/

√
t = η is independent of ε. Proceeding formally, by substituting (4.15)

into (4.1), we find that φ can be expressed in terms of the series

φ(x, t, τ ) ∼ ετ 3/2
∞∑
k=0

εkτ k/2φk(η). (4.16)

Note that for ε → 0, the expansion of (4.15, 4.16) yields u ∼ V0(η)−εφ0(η)es/2V̂T (η), hence
we can identify the O(ε) term with V1(η, s) in the regular expansion used for (4.12). Hence,
the problem for φ0(η) is of the same form as solving (4.12) using variation of parameters. The
boundary conditions for this problem would be that φ0(0) is finite and ηwφ′

0(ηw)+3φ0(ηw) =
0, from expanding (2.15) to next order.

There are several benefits of using this form of expansion (4.15, 4.16). Having φ depend on
space and time allows us to represent time-shifts in the evolution of the leading-order solution
and deformations in its profile in a more compact form. It also gives the position of the wetting
interface in a very convenient form (see Figure 4),

xw(t) ∼ ηw
√
t + φ0(ηw)t3/2 + φ1(ηw)t5/2 + . . . . (4.17)

Since (4.15) is an exact solution of the leading-order problem for all φ, not just φ → 0,
see (4.14), it might be hoped that this form can reduce the magnitude of the higher-order
corrections needed and yield a more accurate leading-order approximation. Finally, we briefly
mention another possible form for the perturbation expansion of the solution motivated by
multiple-scale analysis: the strained coordinate or Poincare-Lindstedt expansion [25, Chap-
ter 4]. Here, the solution combines the form of a regular perturbation expansion,

u(x̃, τ ) = V0(η̃) + εṼ1(η̃, s) + O(ε2), (4.18)

with a slowly varying phase correction,

η̃ = x̃/

√
τ + φ̃(t, τ ), φ(t, τ ) ∼ ετ 3/2

∞∑
k=0

φ̃kε
kτ k/2, (4.19)

where the constants φ̃k are obtained by applying appropriate solvability conditions to the
functions Ṽk+1. While the forms of these expansions are well-motivated by the form of the
general solution (4.15), further analysis remains to be done to determine if they remain valid
over longer regimes than a regular perturbation expansion.

4.2. CONVERGENCE TO THE WETTING-FRONT TRAVELING WAVE

The next regime of behavior for the solution occurs at long times after the Boltzmann solution
has de-stabilized but before the wetting interface has reached the edge of the domain at x = 1.
In [16], it was shown that the solution of the initial-boundary-value problem for (2.12), (2.14)
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Figure 4. Motion of the wetting interface (solid curve) during the starting flow regime along short and long time
asymptotic behaviors (dashed curves).

and boundary condition u(0, t) = 1 on the semi-infinite domain, x ≥ 0, converges asymptot-
ically to a traveling-wave solution of the form in Section 3 as t → ∞. Due to the degenerate
form of (2.12), before the wetting interface reaches x = 1, the boundary condition at x = 1,
(2.13), does not influence the flow and hence until that time the domain is effectively semi-
infinite. Therefore, we can apply the results of Vanaja and Sachdev to estimate the convergence
to the traveling wave in finite time, 0 ≤ t < tw, where xw(tw) = 1. Here we will briefly show
that the rate of convergence improves as the Peclet number increases.

To examine the convergence u(x, t) → U0(x − t + θ), where θ is a phase constant
to account for translation invariance, we write (2.12) in a moving reference frame for u =
U(ξ, t),

∂U

∂t
− ∂U

∂ξ
+ ∂

∂ξ

(
Un+1) = 1

Pe

∂

∂ξ

(
Un ∂U

∂ξ

)
. (4.20)

As described in [20, Chapter 7], classic linear stability analysis of the traveling wave assumes
a solution of the form U ∼ U0(ξ)+ εU1(ξ, t) to then yield a linearized eigenvalue problem
for U1. The translation symmetry x → x + θ of the traveling wave yields a neutrally stable
mode, given by linearizing U(ξ + θ) for θ → 0,

U(ξ, t) ∼ U0(ξ)+ θÛT (ξ)e
λT t , ÛT = U′

0(ξ), λT = 0. (4.21)

Here, instead, we consider perturbations to monotone traveling waves in terms of a phase
function,

u = U0(ξ + θ(ξ, t) ). (4.22)

Again, it can be hoped that this form can extend the range of validity of the linearized model
from infinitesimal perturbations. In particular, we again note that this form gets translation
invariance correct for all θ , not just for infinitesimal translations, θ → 0.

In fact, comparison of (4.22) and the classical linear stability ansatz shows that the lin-
earized eigenvalue problems for both cases are equivalent – they yield the same eigenvalues
and the eigenfunctions differ by a multiplicative weight function derived from U0(ξ). Let
the phase be θ(ξ, t) ∼ −x0 + εθ̂(ξ)eλt and exclude consideration of the translation mode.
Then, the exponential growth rate of perturbations is given by λ = Pe λ̃ and θ̂ (ξ ) satisfies the
eigenvalue problem
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(1 − enPeξ )θ̂ ′′ + (nPe − (n+ 1)Pe enPeξ )θ̂ ′ − Pe2λ̃θ̂ = 0, −∞ < ξ ≤ 0. (4.23)

To show that λ̃ is independent of Pe, we use the change of variables, θ̂ (ξ ) = #̂(z) where
z = enPeξ , to obtain the singular eigenvalue problem for #̂(z),

n2z2(1 − z)#̂′′ + (2n(1 − z)− z)nz#̂′ − λ̃#̂ = 0, 0 ≤ z ≤ 1. (4.24)

The solutions of this problem can be expressed in terms of hypergeometric functions, and
from the results of [16], the eigenvalues are stable. Hence it is clear that the decay rate of the
dominant mode is Pe λ̃1 = O(Pe).

5. The stopping behavior

From the results of the previous section, if Pe is sufficiently large, then by the time that the
wetting interface reaches the far edge of the soil layer at x = 1, we may assume that the
solution has converged to the traveling-wave solution. In this section we examine the short-
time behavior after the traveling wave first feels the influence of the no-flux boundary at x = 1.
Due to this boundary, the wave will stop propagating and change in profile; this was described
as a ‘stopping’ behavior in [23, 24].

Assume that the wetting interface reaches x = 1 at the known time t = tw; then for short
times before tw, the solution is

u(x, t) = U0(x − t + θw), θw = tw − 1, (5.1)

where the phase θw has been chosen so that u(1, tw) = 0. To study the subsequent behavior
for short times in a neighborhood of the boundary, let ε be an artificial small parameter
corresponding to the timescale we wish to consider, then rescale space and time according
to

x = 1 + εx̃, t = tw + ετ. (5.2)

In absence of the boundary condition at x = 1, the outer solution determines the scaling of u
to be

u(1, t) = U0(1 − t + θw) = U0(εx̃ − ετ) = O(ε1/n), (5.3)

as ε → 0 for t > tw. Therefore, in the neighborhood of x = 1, we rescale u by

u = ε1/nũ(x̃, τ ). (5.4)

Consequently, the governing equation (2.12) becomes

∂ũ

∂τ
+ ε

∂

∂x̃

(
ũn+1

) = 1

Pe

∂

∂x̃

(
ũn
∂ũ

∂x̃

)
, (5.5)

on −∞ < x̃ ≤ 0, with the no-flux boundary condition

1

Pe

∂ũ

∂x̃

∣∣∣∣
x̃=0

= εũ(0, τ ). (5.6)
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While (5.5, 5.6) does not take the classic form of a singularly perturbed boundary-value prob-
lem [25, Chapter 2], the solution does include a localized boundary-layer correction marking
the onset of the influence of the no-flux boundary at x = 1, as described in [23, 24]. This
boundary layer accompanies the change in the character of the solution from having compact
support due to degenerate diffusion to being uniformly parabolic when u > 0 everywhere. In
the former case, the boundary condition at x = 1 has no effect on the flow until it comes in
contact with the wetting interface. In the latter case, the details of the boundary condition are
necessary to specify a unique solution of the convection-diffusion equation (5.5).

Following the approach used to study the starting flow in Section 4, we will describe
the stopping behavior in terms of the underlying solution of the outer problem with a phase
function to capture the influence of the perturbations due to the boundary for τ > 0,

ũ(x̃, τ ) = ε−1/nU0(εx̃ − ετ + θ̃ (x̃, τ ) ), (5.7)

where for τ ≤ 0, the phase is θ̃ (x̃, τ ) ≡ 0 to recover (5.1). This will serve as our ansatz for
the inner solution of (5.5).

As in the case of the phase correction (4.16) to the Boltzmann similarity solution for the
starting flow, we can write θ̃ as a time series of the form,

θ̃ (x̃, τ ) ∼ ετ

∞∑
k=0

εkτ kθ̃k(ζ ), ζ = x̃/τ, (5.8)

where the new similarity variable ζ is independent of the artificial small parameter ε; see (5.2).
Consequently, all of the coefficient functions θ̃k(ζ ) are O(1) as ε → 0.

Substitution of (5.7, 5.8) in (5.5, 5.6) yields the leading order problem for θ̃0(ζ ) on −∞ <

ζ ≤ 0,

N (θ̃0) ≡ n(1 − ζ − θ̃0)θ̃
′′
0 + (ζ − 2 − θ̃ ′

0)θ̃
′
0 − θ̃0 = 0, (5.9)

with boundary conditions for matching to the outer solution and satisfying the no-flux condi-
tion,

θ̃0(ζ → −∞) → 0, θ̃ ′
0(0) = −1. (5.10)

Equation (5.9) has a special closed-form solution, and using symmetry methods, we can
reduced it to a first-order Abel equation, yet neither of these observations are helpful for
solving the boundary-value problem subject to (5.10). However, it is helpful to study the local
behavior of solutions of (5.9), which yields that as ζ → 0, θ̃0(y) ∼ θ̃0(0)− ζ − ζ 2/(2n), and
as ζ → −∞, θ̃0(y) ∼ Cζ−1 exp(ζ/n). Consequently, we can find exponentially localized
solutions of (5.9, 5.10) from a one-parameter numerical shooting method in terms of the value
θ̃0(0).

Over a wide range in values of n, to a good approximation, the numerical results show that
θ̃0(0) is linear in n, that is θ̃0(0) ≈ ωn, where roughly ω ≈ −3/4. This rather distinctive
behavior can be extracted semi-analytically from (5.9) in terms of the rescaled variables,
θ̃0(ζ ) = n#(z) where ζ = nz. Then the problem becomes

(#+ z)#′′ − z#′ +#− 1

n

[
#′′ − (#′ + 2)#′] = 0, (5.11)

#(z → −∞) → 0, #′(0) = −1. (5.12)
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Figure 5. Comparison of the asymptotic solution for the moisture accumulation rate constant Rn (5.14) (curve)
with results from direct numerical solutions of Richards’ equation (2.12) at various n’s (dots).

We expand #(z) = #0(z) + #1(z)/n + O(n−2) in the limit n → ∞. The leading-order
problem for #0(z) must still be solved numerically, but it provides us with an estimate that
can be applied for a wide range of values of n, ω ∼ #0(0) ≈ −0·7717894686.

Use of these results for θ̃0(0) in (5.7, 3.4) yields an estimate for initial rate of accumulation
of moisture at the no-flux boundary at t = tw,

u(1, t → tw) ∼ Rn(t − tw)
1/n, (5.13)

where

Rn = (n[1 − θ̃0(0)])1/n ≈ (n+ 0·772n2)1/n. (5.14)

The dependence of Rn on n is non-trivial; it has a maximum near n = 2, a super-exponential
decay Rn ∼ e0·772n1/n as n → 0, and a slow decay for large n. This behavior was verified by
comparison with results from numerical simulations of Richards’ equations at various values
of n, see Figure 5.

The leading-order problem (5.9) for θ̃0(ζ ) was first considered in [24]. It was noted that
truncating the expansion of θ̃ to θ̃0 corresponds to neglecting the influence of the convective
term in the PDE and replacing the no-flux Robin boundary condition by a Neumann condition.
That is, the leading-order estimate is given by solving the horizontal infiltration problem,

∂u

∂t
= ∂

∂x

(
un
∂u

∂x

)
,

∂u

∂x

∣∣∣∣
x=1

= 0. (5.15)

This is in agreement with arguments described by Parlange [40] reducing Richards’ equation
to the porous medium equation for horizontal infiltration, by neglecting the convective effect
of gravity when a wetting front first arrives at a soil stratification boundary [40–42]. However,
this observation also makes it clear that there is a need to go to higher orders in the expansion
of θ̃ to properly describe: the influence of the no-flux boundary condition, the convective
contribution due to gravity, and the longer-time rate of accumulation of moisture at x = 1.

In calculating the higher order corrections to (5.8), we get a series of linear problems for
θ̃k(ζ ) in terms of the operator

Lkθ̃k ≡
[
δN

δθ
− k

]
θ̃k = n(1 − ζ − θ̃0)θ̃

′′
k + (ζ − 2 − 2θ̃ ′

0)θ̃
′
k − (nθ̃ ′′

0 + 1 + k)θ̃k. (5.16)
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Figure 6. Details of the stopping behavior in a neighborhood of the no-flux boundary at x = 1: numerical solutions
(solid curves) and the three-term uniform asymptotic solution (5.22) (dashed) given at corresponding times.

Note that this is not the linearized operator for (5.9). The difference is due to the form (5.7)
in which we are seeking our perturbation solution, where θ̃ is a modification to the phase of
the traveling wave, rather than a linear perturbation of the outer solution. The O(ε) problem
is

L1θ̃1 = − 1
2nPe(1 − ζ − θ̃0)

[
(2n+ 1)θ̃ ′2

0 + (2n+ ζ )θ̃ ′
0 − θ̃0

]
, (5.17)

θ̃1(ζ → −∞) → 0, θ̃ ′
1(0) = −nPe(1 − θ̃0(0)). (5.18)

The solution of this problem scales with the Peclet number, θ̃1(ζ ) = Peθ̄1(ζ ), so the problem
for θ̄1(ζ ) is independent of Pe. In fact, using the scaling

θ̃k(ζ ) = Pe kθ̄k(ζ ), (5.19)

in the perturbation expansion (5.8) of θ̃ (ξ, τ ) makes all of the linear problems for the higher
order corrections independent of Pe.

We note that (5.7) is convenient representation for the inner solution of (5.5) in the neigh-
borhood of x = 1 that reduces the matching conditions to making θ̃ vanish as ζ → −∞.
However, to construct a solution that is uniformly valid in space describing the stopping
behavior, we must make use of ideas from matched asymptotic expansions [25, Chapter 2],
[34, Chapter 2]. In short, a uniform solution can be constructed from the sum of the inner
and outer solutions minus the overlap of the two in terms of a common set of variables.
The outer solution, (5.1), is valid for 0 ≤ x < 1, and in terms of the time-variable τ , it is
u ∼ U0(x− ετ − 1). Similarly, we write the inner solution, (5.7), in terms of the outer spatial
variable x as u ∼ U0(x − 1 − ετ + θ̃ ), where θ̃ depends explicitly on ε as shown in (5.8),
but ζ is scale-independent of ε. Then both of these solutions are expanded in powers of ε,
and the common terms are identified to yield the uniformly valid solution. This procedure is
straightforward for general n, though the algebraic expressions are somewhat unwieldy, so we
briefly present only the special case for n = 1 as an example. For n = 1, the expansion of the
outer solution is

uout ∼ 1 − ePe(x−1)e−Peετ ∼ 1 − ePe(x−1)
(
1 − ετPe + 1

2ε
2τ 2Pe2

)
, (5.20)
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while the expansion of the inner solution is

uin ∼ 1 − ePe(x−1)

(
1 − ετPe[1 − θ̄0(ζ )] + 1

2
ε2τ 2Pe 2

[
1 − 2θ̄0(ζ )+ θ̄2

0 (ζ )+ 2θ̄1(ζ )
])

.

(5.21)

Consequently, the O(ε2) accurate uniformly valid solution for τ → 0+ is

u ∼ 1 − ePe(x−1)
(
eετPeτ + ετPeθ̄0(ζ )+ 1

2ε
2τ 2Pe2[θ̄2

0 (ζ )+ 2(θ̄1(ζ )− θ̄0(ζ ))]
)
, (5.22)

where ζ = (x−1)/τ . The excellent agreement between the three-term solution (5.22) and the
results from the numerical solution of (2.12) are shown in Figure 6. The perturbation solution
is accurate for even moderately large values of u in the boundary layer; the accuracy can be
improved by retaining more terms in the expansion of θ̃ (5.8). Moreover, using these results,
we can extend the validity of the estimate of the moisture accumulation at the x = 1 boundary
(5.13) in the general form,

u(1, t ∼ tw) ∼ Rn(t − tw)
1/n

(
1 +

∑
k=1

c̃k(t − tw)
k

)
, (5.23)

where the c̃k coefficients are given by algebraic combinations of θ̄k(0) and powers of Pe.

6. Reverse flow with saturation

From the results of previous section, we can calculate the solution for short to moderate times
after the gravity current has impinged on the impervious boundary. As shown in Figure 6, the
solution becomes non-monotone since the water accumulates rapidly in the neighborhood of
x = 1. For longer times, the behavior at this boundary is the dominant mechanism controlling
the flow, as water begins to back-propagate through the soil layer. In this section and the fol-
lowing one, we consider two forms of reverse flow (that, to the author’s knowledge, have not
previously appeared in the literature) that can occur following the stopping behavior regime.

We begin with the simpler case, when saturation occurs and drives the reverse flow. As
described in Section 2, if the soil layer has a saturation level satisfying us < ePe, then
Richards’ equation (2.12) for unsaturated flow must be treated on a reduced domain, with
an interface condition to the growing region of the layer where the soil is saturated. At a large,
but finite time t = ts , estimated by (5.23), the concentration of water will reach the saturation
level, u = us , at x = 1. Starting from xs = 1, the saturated region will spread upward through
the layer, with a no flux boundary condition at the interface with the unsaturated flow (2.17).

Following time ts there is a brief transient regime and then the solution rapidly converges to
a constant-velocity saturation wave that we will focus on here. The later stages of the transient
regime (the convergence to the traveling wave) can be treated similarly to the approach given
in Section 4; the earlier stages of the behavior will be studied in more detail in Section 7. Here
we will assume that the reverse flow has converged to a traveling wave, u → Us(x−cst + θ),
with cs < 0 (see Figures 2 and 7).

The saturation wave satisfies equation (3.1) subject to the boundary conditions

u(0, t) = 1, u(xs(t), t) = us > 1, (6.1)

and the no flux condition (2.17) at xs(t). Integration of (3.1) and application of the boundary
conditions yields the speed of the reverse flow,
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Figure 7. (left) Numerical calculation of the saturated reverse flow, with us = 2, showing propagating of a
constant velocity wave. (right) Convergence of the same data (dotted curves) to a saturation wave given by the
solution of (6.3) (solid curve), when viewed in the moving reference frame with ξ = x − cs t . (The final few
data curves show divergence from the intermediate asymptotic saturation wave and convergence to the long-time
steady state solution.)

cs = − 1

us − 1
< 0, (6.2)

and the first order ordinary differential equation for the saturation front on −∞ < ξ ≤ 0,

dUs

dξ
= Pe

[
Us − 1

Un
s

(
us − Us

us − 1

)]
, Us(0) = us. (6.3)

Note that Us(ξ ) is defined with the saturation interface at ξ = 0, with a uniformly saturated
flow u ≡ us for all ξ > 0. Neglecting the short transient leading to convergence to Us , we
can write the solution as (see Figure 7)

u(x, t) ∼ Us(x − xs(t) ), xs(t) ∼ 1 + cs(t − ts). (6.4)

The saturation wave is the penultimate intermediate-asymptotic stage in the dynamics of
this problem before the convergence to the steady state. As this wave propagates toward x = 0,
eventually it will feel a ‘stopping’ influence (as in Section 5) due to the Dirichlet boundary
condition at x = 0. However, if n � 1, we can see that this is a weak influence. Linearizing
the solution for Us → 1 yields

Us(ξ → −∞) ∼ 1 + ε exp

[
Pe

(
n+ us

us − 1

)
ξ

]
. (6.5)

Thus, if n > 1 the saturation front profile approaches u → 1 more rapidly as x decreases than
the steady-state solution, ū(x) = ePex . Hence the saturation wave moves toward x = 0 with
relatively little ‘stopping’ influence until it approaches the width of the unsaturated steady
state solution, x̄s = log(us)/Pe ; see Figures 7 and 8.

7. Reverse flow without saturation

We conclude by briefly examining the case in which the saturation constraint does not come
into play and as t → ∞ the solution approaches the unsaturated steady state ū(x) = ePex

in the entire layer. Here, we will use the assumption that u � 1 as x → 1 to construct a
quasi-steady solution when n � 1.

Let u(x, t) = ũ(x, t)/ε, where ε is a small parameter, ε = O(e−Pe), then (2.12) becomes
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Figure 8. The space-time diagram showing regimes of no-flow (the dry state), unsaturated flow, and saturated flow
and the interfaces separating those regions.

εn
∂ũ

∂t
+ ∂

∂x

(
ũn+1) = 1

Pe

∂

∂x

(
ũn
∂ũ

∂x

)
, (7.1)

with the no-flux boundary condition,

1

Pe

∂ũ

∂x

∣∣∣∣
x=1

= ũ(1, t). (7.2)

The leading-order solution of this problem is u0(x, t) = C(t)ePex , where C(t) is a as-yet
undetermined function of time. It is more convenient to represent this coefficient function as
C(t) = exp(−Pex1(t)), where x1(t) represents a moving boundary where the assumption that
u � 1 breaks down. We can then approximate the structure of the solution by u ≈ 1 to the
left of x1(t), and overall

u0(x, t) =
{ exp(Pe[x − x1(t)]), x1(t) < x ≤ 1,

1 , 0 ≤ x < x1(t),
(7.3)

see Figure 9. Solution (7.3) may be regarding as a leading-order outer solution, valid every-
where away from a small neighborhood of x1(t). For x � x1 the solution is essentially
determined by the boundary condition u(0, t) = 1, for x � x1 by (7.2), and continuous across
x1. As will be shown, details of the solution near x1 are not needed to obtain the leading-order
behavior. We note that in x1 < x ≤ 1, the solution is a quasi-steady propagating wave, it is
given in terms of the equilibrium solution by

u(x, t) ∼ ū(x − x1(t)), (7.4)

with the accumulation of moisture at the impervious boundary given by u(1, t) ∼ ū(1−x1(t)).
The rate at which moisture accumulates at the boundary and at which the reverse flow

propagates back toward the surface at x = 0 is controlled by the flux of moisture into the
layer. The total mass of water in the layer is given by

m =
∫ 1

0
u(x, t) dx, (7.5)
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From the PDE (7.3), and ansatz (7.3) while x1(t) > 0, we have

dm

dt
=
(

1

Pe
unux − un+1

) ∣∣∣∣
x=0

≈ 1. (7.6)

Similarly, direct substitution of (7.3) into (7.5) yields

dm

dt
= (

1 − ePe(1−x1)
) dx1

dt
. (7.7)

Consequently, we can write a first-order differential equation for the evolution of x1(t), (see
Figure 10)

dx1

dt
= − 1

ePe(1−x1) − 1
. (7.8)

It is notable that this solution is independent of n in contrast to the nature of the stopping
behavior being strongly dependent on n and independent of Pe to leading order. For short
times after the onset of this reverse flow regime, when x1(t1) = 1, the wave propagates as if it
were purely diffusive,

x1(t) ∼ 1 −
√

2(t − t1)

Pe
, as t → t1. (7.9)

This makes for an interesting contrast with the constant speed propagation of the reverse-flow
saturation front found in the previous section.

The final stage of the evolution occurs when x1(t) → 0 and the influence of the structure
of the solution near the x = 0 boundary becomes significant. However, by this point in
time, the difference between (7.3) and the equilibrium solution ū(x) is relatively small, so
linearized stability may be sufficient to describe the leading order dynamics. Using separation
of variables, we can describe the evolution of infinitesimal perturbations to steady state by

u(x, t) = ePex + εŵ(x)e−(n−1)Pex/2e−λ2t , as t → ∞, (7.10)

where the eigenfunction ŵ(x) on 0 ≤ x ≤ 1 satisfies the boundary-value problem,

ŵ′′ −
(

Pe 2(n+ 1)2

4
− λ2Pe e−nPex

)
ŵ = 0, (7.11)

ŵ(0) = 0, (n+ 1)ŵ(1) = 2

Pe
ŵ′(1). (7.12)

This is a self-adjoint Sturm-Liouville problem, so no unstable perturbation modes can oc-
cur. The solution of this problem is given in terms of Bessel functions, and (after using the
boundary condition at x = 0) takes the form

ŵ(x) = Yν

(
2λ

n
√

Pe

)
Jν

(
2λ

n
√

Pe
e−nPex/2

)
− Jν

(
2λ

n
√

Pe

)
Yν

(
2λ

n
√

Pe
e−nPex/2

)
. (7.13)

Application of the other boundary condition, Pe(n + 1)ŵ(1) = 2ŵ′(1), yields an equation to
determine the eigenvalues λ, which all correspond to finite decay rates.

We note that with minor modifications this linear stability analysis for t → ∞ could be
applied to describe the final stages of the evolution of the reverse flow with saturation in
Section 6, on the interval 0 ≤ x ≤ x̄s = log(us)/Pe .
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Figure 9. (left) Numerical calculation of the unsaturated reverse flow, showing the wave slowly approaching the
steady state, (right) Collapse of the same data onto a single quasi-steady wave profile (7.3), when viewed in the
moving reference frame ξ = x − x1(t).

Figure 10. The space-time diagram for regimes in the dynamics without saturation. The wetting interface and the
contour for u ≈ 1·1 are shown with solid curves. The x1(t) interface from (7.8) is shown as a dashed curve for
comparison.

8. Conclusion

Thus, we have concluded the analysis of this vertical infiltration problem, bringing the solu-
tion from its behavior for t → 0 through to the end, t → ∞. Using perturbation methods,
we constructed approximate solutions for all of the stages in the dynamics of this problem.
While complete solution of this problem, taken as a whole, necessitates numerical simulation,
using asymptotics to isolate the dominant influences governing each stage of evolution can
yield much more insight regarding the structure of the solution. Reducing the full problem
to obtaining an intermediate asymptotic solution for each stage makes careful mathematical
analysis tractable. The examination of the linear stability and weakly-nonlinear dynamics
of the asymptotic states in the full problem shows how dynamic transitions between stages
develop and allows us to construct relations connecting the different stages of the dynamics.
The problem for (1.1) studied here serves as a simple example of how this perturbation-method
approach can be applied to quantitatively predict the dynamics in more general problems.
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